ON THE ECOSYSTEM’S STABILITY
A. M. MOLCHANOV

INTRODUCTION

This report contains an attempt at the theoretical
analysis of the types of influence of man on the
environment.

Even the simplest mathematical model reveals at
least four possibilities — the influence may be pulsed
or long-term, it may be exerted on the system itself
or affect the regulatory connections.

Therefore, the posing of the question about the
maximum permissible loads depends both on the
properties of the system and on the nature of the
influence.

THE STATE AND THE PROCESS

The state of any system, including an ecological
system, is given by the set of numbers characteriz-
ing the quantity or level of the components forming
this system,

These important variables, which describe the
system, are traditionally designated by x with var-
ious indexes. The number of variables is determined
primarily by the complexity of the system, but
depends as well on the desired extent of detailing.
Thus, for example, the total number (or biomass)
of trees on an area under study may be divided
according to species, height, or age.

However, such data are sufficient only for the
purposes of classification (“inventory taking”). For
the tasks of prediction, and all the more so for the
tasks of management, additions and refinements are
needed.

The subsequent fate of the system in question
essentially depends on the siuation in which it is
found — the external environment. The state of the
environment in turn is described by some set of
numbers. We designate these numbers by the letter
y with indexes.

At first glance it appears that we need to bring
into the examination “the environment of the envir-
ronment,” to examine another series of letters, then
the next one, and so forth, until all existing alpha-
bets have been exhausted.

Strictly speaking, this is true, If, nevertheless,
scientific study is at all possible, there must be a
serious reason for this. This reason is that each sys-

tem has its own characteristic time scale and these
time scales usually differ radically for the system
and the environment containing it.

The stated situation permits a simple and mean-
ingful mathematical formalization:
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The small parameter ¢ in this system is equal to
the ratio of the characteristic time = of the system
in question to the substantially greater time T, which
is necessary for appreciable changes in the proper-
ties of the environment:
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Thus, for example, the normal frequency of the
pulse is one beat per second, and the periodicity of
malaria attacks is one day.

Consequently, in this example
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A medical example and not an ecological one
was selected in order to emphasize the common
character of the notions being developed.

The structure of system (1) shows that the
dynamics, the “life” of the variables x; occurs
against the background of the weak drift of slow
evolution of the external parameters y,. In many
instances it is sufficient to set ¢=0.

The variables yx then become constants:

Y= ok 4)

and enter as parameters the right side of the equa-
tions for dynamic variables

dx,
dt

Thus, for example, a sea shell might be found in
the zore of alpine meadows at an altitude of 2500
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meters above sea level. This internally contradictory
statement signifies that we are not interested in the
geological processes which resulted in the raising
of the former ocean bottom to nearly 3 kilometers.
We ignore the “geological epsilon.”

FIXED REGIMES

The ignoring of the small parameter : means
consequently the fixing of external conditions. How-
ever, the state of the system in question may be
completely different when given the same values of
the external parameters y=a.

A forest in a given area may be mature and
healthy — this is one fixed state. The overeating
of leaves by caterpillars will not kill the forest, but it
will lead to another fixed state with sharply reduced
photosynthesis. Finally, a fire, having consumed the
forest, creates a third fixed state which subsequently
will slowly evolve under fixed external conditions.

Mathematically this means that the equation for
X may have several fixed states with the given para-
meters.

The basic ideas can be illustrated by the very
simple example of one variable x and one parameter
a;

& = t(x, o) ©)

In this case the set of fixed states of the system
which is given by the equation

0= f(x, a) 7

is mapped by a curve on the plane (x, a).

The situation depicted above causes natural
association with the universal biological notion of
the states of activity and rest, which are character-
istic of all biological systems. There is no doubt
that such states are also characteristic for ecological
systems. Moreover, the general mathematical
approach is also fruitful in the analysis of social,
technological and technical systems.

However, it is better to retain the biological, or,
even, the strictly medical terminology, owing to the
fact that the questions under scrutiny have been
studied most of all in medical practice.

PULSED INFLUENCE

The states of activity and rest have a definite
stability. The proposed model makes it possible to
examine the basic types of reaction of a system to
pulsed influences. It is natural to interpret such an
influence as an instantaneous transfer from one
point of the phase plane to another.

As was already said, visual biological represen-
tations on an organism level are the basis, The

integration of the notions in the model makes it
possible to construct their ecological analogue.

Let us examine the obvious possibility, when the
state of rest is sleep, and the state of activity is
awakeness. In this case the value x should be inter-
preted as the level of motor activity, while the para-
meter « should be tied with the level of excitation
of the nervous system.

It is evident that this is an extremely simplified,
illustrative description. Nevertheless, it is useful for
an understanding of the possibility of a unified
mathematical model that does not depend on the
structural, morphological level of the system in ques-
tion.

Thus, for example, it is possible to attempt to
analogize the state of “activity” with the golden age
of the Helladics, when the entire peninsula was cov-
ered with mighty oak forests. At that time the state
of “rest” of this ecological system was its present
dense condition of thorny bushes and outcrops of
rocks. It is believed that the main cause was the
goats which had not so much eaten up as they
trampled down the underbrush. Freed mountain
streams washed away the soil, and karst depressions
completed the destruction. And now there are
almost no goats and the streams do not rage. ...

Let us return, however, to the model (Figure 1)
and examine the state of activity A, which is on
the branch AA’. The pulsed influence on the sys-
tem corresponds to the instantaneous displacement
along the horizontal line which passes through point
A. The nonlinear theory of oscillations suggests the
name “phase impact” for such a change of state of
the system. Such terminology is justified by the
extensively widespread name “phase space” for the
space of dynamic variables.
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Figure 1. A system with a different number of fixed re-
gimes. In the zone bhetween o’ and ", there are
three fixed regimes, whereas above and below
this zone there is one for each.

Of course, the phase impact upsets the equilib-
rium, but if the disturbance has not thrown the
representing point of the system beyond the line RA



of the unstable states of equilibrium, then the sys-
tem in agreement with the equation of motion (6)
returns to the previous state of activity A. If the
phase impact throws the system beyond the point
U (on the branch RA), then the system enters a
state of equilibrium at point R on the line of the
states of rest.

Thus, the phase impact has a clearly defined
threshold nature — to the right of U there is the
full reestablishment of activity to the original level,
to the left of U the system enters the state of rest.

It is necessary, of course, to bear in mind the
arbitrary nature of the terminology — the state R
should be considered “rest” only with respect to
the state A. Thus, for example, a marmot may be
awake or be asleep, or may become lethargic. The
state of “lethargy” is “rest” with respect to activity,
while sleep is rest with respect to lethargy. For our
purposes it is sufficient to distinguish between two
contiguous levels which differ with sufficient force
in the intensity of the activity.

Let us now examine the consequences of the
pulsed influence on the parameters of the system.
The space of the parameters is called the structural
space of the system, since to each point in this space
there corresponds a completely defined nature of
the dynamics of the system, its very own, as is said
in the theory of oscillations, “phase portrait” of
the system, Therefore, it is reasonable to call the
pulsed influence on the parameters of the system
a “structural shift.”
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Figure 2. The irrevetsibility of the structural shift. Fol-
lowing the shift AP, the system enters the bal-
anced working regime with a higher level of
activity.

Mathematically a structural shift is a displace-
ment in a plane (X, «) along the vertical passing
through point A. Obviously, it is worthwhile em-
phasizing that the plane (X, «) is the direct product
of the phase space (the line x) and the structural
space (the line a). In general, this is a space of very
great dimensionality, but the necessity of a clear
depiction makes it necessary to limit ourselves toa
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very simple case. Besides, the basic concepts are
sufficiently meaningful and rich even given this
most simple case.
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Figure 3. The gradual accumulation of structural recon-
structions, which results in a breakdown into the
inactive state R.

In contrast to the phase impact, the structural
shift necessarily changes the state of the system —
there is an “after effect.”

The new regime that arises upon the achieve-
ment of equilibrium, which was disturbed by the
structural shift, may be rest, may be a state of
greater or less activity,

Another important property of structural shifts,
which is closely connected with irreversibility, is the
cumulative nature of such influences.

SLOW (EVOLUTIONARY) MOTION

Everything expounded above pertained only to
rapid motions.

The next problem in difficulty is the calculation
of slow changes of parameters. For lack of a better
word we will call it the “evolution” of the system.
However, it is necessary to bear in mind that this
is not necessarily evolution in Darwin’s sense.

The rapid motion of the variables x we would do
well to call the kinetics, the dynamics of the sys-
tem, while the slow internal structural changes of
the parameters would be best characterized by the
word “evolution,” which opposes them verbally to
the kinetics of the system. Thus, for example, the
age changes of an ecosystem or organism are nat-
urally called an evolution in respect to vital func-
tions, metabolism and kinetics,

In order to emphasize that we are getting ready
to examine an expanded system, let us return to
the designation y for slow variables. They have
ceased to be external parameters and have become
equivalent, even though slow, yet all the same var-
iables of the system.

Here is a simple example. In studying a forest,
one might not be interested in the process of soil
formation and might consider the soil qualities a



given parameter. However, if it is a matter of hun-
dreds and thousands of years, the standing timber
takes an active and important part in the creation
and change of the soil on which it grows. The
reversion to y means, consequently, not only the
expansion of the system, but also the significant
increase in the time scale during which the study
of the system takes place. Great time scales, let us
say, geological ones, may no longer be included in
such an examination. In conformity with this, the
landscape features — river valleys, hills, water-
tight layers — also must be considered invariable
parameters even for an expanded system.

Let us write out a more complete model:

dx _
'&'t - f(x: y)

(®)
dy _
at eg(x, y)

The points on the curve (%, y) =0 are no longer
stationary points of our complete system.

Nevertheless, the motion in the vicinity of this
line occurs considerably slower, with a velocity on
the order of ¢, and not one, as at the remaining
points of the plane (%, y).

The points of the curve f(x,y) =0 are called
points of quasi-equilibrium, while those points which
“attract” the rapid variables are called metastable.
The points of true equilibrium, which correspond to
the disappearance of both velocities (both rapid
and slow motion)

f(x,y) =0
€))
g(x,y) =0
lie, of course, on the curve of quasi-equilibrium,
and more precisely, at its intersection with the
curve g(x,y) =0.

YA T
- /
/7
/ \ /
/ \ /
/ N/
X

Figure 4. Rapid motion toward the line of quasi-equilib-
rium f(x,y) = O, and slow evolution along it,

It stands to reason that this “true” equilibrium
can be (and necessarily is) in turn a quasi-equilib-
rium in respect to even slower motions. We are
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assuming, of course, that the problem under discus-
sion is correctly stated, for the necessary time scale,
with consideration of all significant variables.

Thus, the existence of two time scales leads to
two concepts of stability — metastability and com-
plete (true) stability.

It should, perhaps, be noted that the hierarchy
in the concept of stability is a reflection and con-
sequence of a profound case — the hierarchy in
the structure of the system being studied. Metasta-
bility and stability (for the sake of brevity we will
not add each time the adjective “true”) is the
mathematical form of the important features of
the structure of complex biological systems.

RAPID AND SLOW MOTIONS

The distribution of the points of equilibrium on
the curve of equasi-equilibrium is of decisive signifi-
cance to the properties of the system and the
nature of its reaction to external interference.

Let us examine the case depicted in Figure 5,
where the system has a stable equilibrium on the
working branch AS, and on the branch of rest the
unstable equilibrium U.
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Figure 5. The point S is stable; the point U is unstable.
From P, and P, the system returns to S. From
point Q, there is no return.

Assume that the system experienced both a phase
impact and a structural shift which threw it to point
p.. Then the system quickly reestablished its work-
ing ability, and hence slowly returns to the stable
working point S.

The word “quickly” here and henceforth means
“after a time on the order of one,” and “slowly” —
“after a time on the order of 1/¢.”

The system behaves differently when thrown to
point p,. At first it is even more active (X is greater
than S), but this is “unhealthy excitation” and
quickly “having expended its forces” the system falls
on the branch of rest UR. Afterwards there occurs
a slow “reestablishment of forces” — evolution to



point R — then a return to a working state at point
A. The evolution along the arc AS leads to the com-
plete reestablishment of the original optimum state S.

The entire description is reminiscent of the his-
tory of a serious illness with a favorable outcome.
For a more substantive understanding of the words
“quickly” and “slowly” let us cite an ecological
example. In the opinion of specialists, the already
mentioned destruction of the forest in Greece oc-
curred over two or three centuries, while for its
natural reestablishment (evolution to point R) from
ten to one hundred thousand years will be required.

Events develop even more dramatically when SQ
is disturbed. From point Q the system quickly enters
a “shock” state on the branch RU below point U
and then there develops “progressive deterioration”
— slow evolution draws the system further and fur-
ther away from point S.

The entire plane (x,y) decomposes in the exam-
ined case into three domains.

The domain of stability lies above the line
R’RAA’. Between the line R’'RAA’ and the hori-
zontal straight line passing through point U there
is located the domain of adaptation.

Figure 6. An adaptive system. The domain above the hori-
zontal C is the domain of adaptiveness.

Below the horizontal of U is the domain of
depression of the system, if by this we mean the
inability to return independently to the state of orig-
inal activity,

STABLE AND ADAPTIVE SYSTEMS

The existing biological systems have covered a
long evolutionary (in Darwin’s sense) path. Any of
them have both stability and adaptiveness. But dif-
ferent systems have the properties in different pro-
portions. This pertains especially to the ecological
systems found under extreme conditions — tundra,
desert, mountainous, saline. Unfortunately, this list
has now been noticeably expanded by the irrespon-
sibility of mankind.
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It is thus more important to examine two extreme
cases — adaptive systems with little stability and
stable systems with little -adaptiveness.

Let us begin with an example of an adaptive
system.

The system loses its activity even with weak
phase impacts, such as, for example, SU. It is even
more sensitive to structural shifts, The shift SP
already leads to a quick loss of activity and long
recovery period RR. However, the system is capable
of self-recovery and long-term activity in the sector
of evolution AS. Moreover, even comparatively
strong shocks such as the great structural shift PQ
do not disrupt the system and even do not increase
significantly the length of the recovery period.

Stable systems react differently to interference.
Let us examine in detail the same function (X, y),
but with a different arrangement of the points S
and C, which is determined, as we saw, by the prop-
erties of slow motion, i.e., of the function g(x,y).

The clearest feature of such systems is that they
“do not know how to rest.” They are able to quickly
restore their activity even when there are strong
phase impacts and structural shifts. However, the
hitting of the branch of rest results in irreversible,
progressive depression. For the system depicted in
Figure 7, the domain of adaptation is the narrow
zone ending with the arc RU,

As a venture it might be proposed that stability
is characteristic of systems under favorable external
conditions.
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Figure 7. A stable system, The domain of depression
begins immediately after the line CUA,

But if the conditions are unfavorable, the system
should be adaptive so as not to be destroyed.

METHODOLOGICAL REMARK

From the viewpoint of quick, dynamic phase
variables the two examined systems are identical.



The difference between them, and here a funda-
mental one, is found only with a careful analysis of
the evolutionary equation (for slow variables).

Therefore, strictly quantitative approaches (such
as, for example, imitation modeling, which was
fashionable in the recent past) is suitable for watch-
ing after a system, for resolving current, tactical
problems.

For the purpose of forecasting, the adoption of
long-term solutions, and strategic planning the
strictly quantitative methods are entirely insufficient
and should be supplemented by a qualitative, sys-
temic, structural analysis of the object in question,
by a comprehensive study of the nature of its inter-
action with the environment and type of reaction to
external interference.

HYSTERESIS
In practical work with any complex system —
ecological, biological or technical — we usually

have no opportunity to “look inside” the system.
Therefore interference and direction occur, as a
rule, “blindly” — by a change in the parameters of
the system and the observation of its reaction.

From this point of view adaptive systems produce
a strong impression on the researcher who is accus-
tomed to stable systems, There the situation is sim-
ple — to each value of the governing parameter
there corresponds a quite definite working regime.

But now the adaptive systems are “capricious.”
If we give some a today, the system works. If we
give the same o tomorrow, the system does not
react. And this is in the simplest case, when the
system has in all two metastable states.

Meanwhile nothing prevents even a one-dimen-
sional (but complex) system .from having several
regimes of a differing degree of activity.

In such systems there arise hysteretic phenomena
that are described in the simplest case by the con-

cept of the hysteresis loop.
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Figure 8. Four metastable regimes, which are divided by
three unstable quasi-stationary states.

.

The phenomena develop in the following way.
If the system is initially in state R, then the increase
in the governing parameter o beyond the limit o
leads to a breakdown in regime A. However, the
attempt to return to regime R by a rapid decrease

in a does not lead to the desired result — the sys-
tem remains in regime A. There must be a very
noticeable decrease in @« — below the “lower thresh-
old” of the hysteresis «’ — in order to return to the
branch of regimes R, In other words, it is possible
to approach regime R only from below, and regime
A only from above.
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Figure 9. A hysteresis loop formed hy the twa branches of
the regimes A and R.

RELAXATION AUTO-OSCILLATIONS

An additional remarkable situation is a distinctive
feature of adaptive systems — they can exist in
general without having a stable stationary state.
This can easily be seen from the following cele-
brated example,
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Figure 10. An auto-oscillating regime. A generator of dis-
continuous oscillations.

In the strict mathematical sense this example was
carefully studied in the works of van der Paul,
Andronov and others. For our purposes it is im-
portant to emphasize that oscillations of this type
are not the specific property of radio engineering.

On the contrary, any organism with its clearly
periodic alternation of activity and rest is a similar
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auto-oscillating system. The daily rhythm is a con-
sequence and evolutionary adaptation of an arbi-
trary, initially auto-oscillating regime.

More complex, ecological systems have adopted
(in the middle latitudes) an annual cycle, man-
aging without the external period in the tropics.
This attests clearly enough to the endogenic, inter-
nal auto-oscillating basis of the adopted (daily,
monthly and annual) cycles.

“THE CURSE OF DIMENSIONALITY”

Real biological systems always contain a large
number of components of the structural, chemical
and morphological type. It seems, therefore, that
there must be many variables for the modeling even
of not very complex biological systems.

Not by chance do many existing models of eco-
logical systems contain tens and hundreds of var-
iables of the same time scale.
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Figure 11. A current pipe. The varying fate of trajectories
beginning at near points.

The strictly computational difficulties indeed
grow very rapidly as the number of variables grows.
This is evident from the following simple discussion.
Assume that to study the dynamics of a complex
system we calculate on a computer a pencil of tra-
jectories which is “dense” enough so as not to over-
look an interesting regime.

Let us assume a net with ten points for each
“n” dynamic (phase) variables. Then the total
number of trajectories in this current pipe is huge:

N=10"

With the high speed of modern computers of
ten billion operations per second (S=10), in
an entire year of continuous calculation
(1 year=3.15 X 107 sec) it would be possible to
handle a system of the eighteenth order.

A system of the twentieth order would require
100 years . ... The fantastic suggestion of increas-
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ing the high speed of computers by 10 orders would
lead to a system of only the thirtieth order.

All of this means, of course, only one thing: The
complete, absolute helplessness of the strictly tech-
nical approach, the lack of promise of the methods
of direct examination in ecological tasks of even
average difficulty.

Only thought, philosophy of life and science can
help.

THE BASIC ROLE OF TWO-DIMENSIONAL
SYSTEMS

The theory of stability of dynamic systems
initially arose in celestial mechanics in the works
of Poincaré, Lyapunov and their followers. Subse-
quent development in the works of Andropov,
Chetayev, Bogolyubov, Tikhonov and many others
led to the creation of profound qualitative methods
of studying general dynamic systems,

For our purposes one simple consequence of the
general theory is essential. In order to determine
the stability of a stationary state it is necessary to
find n characteristic numbers of A, by solving the
age-old equation det || A-AE || =0, where A is the
matrix of the linearized system whose coefficients
depend, of course, on the parameters of the system.

The characteristic numbers of A (their n pieces),
when n is the dimensionality of the system, which
generally speaking are complex, also depend on the
parameters. The stability of a stationary state is
determined by the signs of the real parts,

p=Rea,

of the characteristic numbers.

If all p are negative, p<0, then the stationary
state is stable.

However, when the parameters change, the sta-
bility may be lost. For this it is sufficient for just
one of the p to become zero and then become posi-
tive. In all there are just as many numbers as the
dimensionality of the system, i.e., there are very
many in complex systems., However, “normally”
these numbers do not all at once become zero, but
only one at a time. Of course, there may be situa-
tions in which several p at one time become zero,
but for this a very special combination of values of
the parameters must be “examined.”

This reasoning is not at all strict; it nevertheless
shows that more frequent, and thus more important
for the applications, is the case when the stability
is lost precisely because of one — the only —
characteristic number,

This conclusion is very important, for from this
it follows that the normal case in the most complex



system is the existence either of two or one signif-
icant variable.

If the real root intersects zero, the one is the
significant (unstable) dynamic variable.

But if the complex root becomes purely imag-
nary, then two significant variables arise,

With subsequent change in the parameters some
other pair of variables may lose their stability, but
the main occurrences happen precisely with the
transition from stability to instability, but not with
a complication of the nature of instability.

And it is precisely for these decisive extreme
situations that there are serious grounds to doubt
that there will be two or even one (in the case of
a real root) significant variable,

THE TRANSITIONAL PROCESS OF
THE TWO-DIMENSIONAL SYSTEM

What exactly happens after the stability of a
stationary point is lost?

In the case of a real root (the unipolar case)
there arises the quick motion of the type of the
transistion W—A in Figure 1 and the system will
simply shift to a new stationary state.

An exactly analogous situation can also arise in
the two-dimensional case (the loss of stability of
a complex root).

Figure 12 depicts the situation with a “normal”
non-extreme value of the parameters of the system.
Let the system be in the state S. Let us begin to
change the parameters. It may happen that point C
will merge with the node S, which will lose its sta-
bility and undergo the quick transitional process
S—F along the separatrix CF. There will arise a
new stationary state — the focus F. It is even eas-
ier to imagine the reverse process — the confluence
of C with the focus F.

X1
Figure 12. The separatrixes AC and BC isolate the domain

of attraction of the focus F. The remaining
trajectories bend toward the stable node S.

BIRTH OF THE LIMIT CYCLE

However, in two-dimensional systems there may
be a fundamentally new phenomenon — the disap-
pearance of the stationary state and the appearance
of a stable periodic regime — the limit cycle.

Let the system whose portrait is depicted in Fig-
ure 13 be in the stable state F. The domain of
attraction of this state is the interior of the unstable
limit cycle C. If when the parameters change the
cycle C shrinks into the point F, there occurs a
rigid excitation of oscillations. The system shifts to
an oscillating regime, periodically running over the
limit cycle Z,
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Figure 13. Within the stationary limit cycle is the un-

stable limit cycle C, which surrounds the
stable focus F.

This same effect arises when there is a suffi-
ciently strong phase impact which takes the system
beyond the bounds of cycle C. In this instance there
also arises a transitional process which does not
lead to a new stationary state. As in the first case
there arise stable oscillations with a clearly defined
period along the stable limit cycle Z.

CONSTANT (FLOW) INFLUENCES

The interaction of man with the environment is
not exhausted, of course, by a one-time interfer-
ence.

More typical is, on the contrary, a constant influ-
ence on the system. A typical example is commer-
cial fishing, Annually a certain number of speci-
mens are taken from their populations.

In formal mathematics this is a negative flow in
the system. It is influence directly on the system
and it can be described by a change in the right side
of the equation for x:

dx

m =p+1f(x,y).
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This elementary calculation already shows that
the constant influence on the system is more com-
plex than the pulsed influence on the parameters,
because it leads not simply to a change in the para-
meter, but to an increase in the number of para-
meters, to a change in the dimensionality of the
structural space.

The constant influence on the environment cor-
responds to the appearance of an analogous flow
current in the equation for y:

dy o
dt

An example of this influence is the constant dis-
charge of industrial wastes into a river or lake.

An analysis of possible reactions of systems to
such influences which is in any way complete is a
complex task.

Even a correct posing of the question offers ser-
ious difficulties and should be the object of further
research,

It is possible nevertheless not to imagine how
such research might develop. The point of depar-
ture should be the division of systems into stable
and adaptive.

This is evident from the fact that given suffi-
ciently small p and q, adaptive systems remain adap-
tive, and stable systems, stable.

This simple consideration (the traditional mathe-
matical argument “on continuity”) shows the result
of research would be, apparently, a more detailed
classification of both adaptive and stable systems.
Intuitive considerations give grounds to hope that
the modern methods of the qualitative theory of
ordinary differential equations are quite sufficient
for a complete examination of this problem.

The difficulty will most likely be to give a suffi-
ciently rough classification, to avoid the niceties
unnecessary for practical work, to which mathe-
maticians are so inclined.

THRESHOLD INFLUENCES

The theoretical analysis made in this report leads
to the conclusion:

The traditional differentiation of threshold and
cumulative influences on biological (in particular,
ecological) systems has reasonable grounds only
under completely defined conditions:

First, the influence is of an instantaneous, pulsed
nature.

Second, the times of observation of the reaction
are small in comparison to the time of the spon-
taneous structural reconstruction of the system.

It also follows from the analysis that a more
rough and general description of the properties of
the system emerges when introducing the concepts

e[q+ex,y)]
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of stability (metastability) and adaptiveness.

These concepts follow from the general concept
of stability when considering the hierarchy in the
structure of real biological systems, which leads to
a hierarchy of radically different time scales.

The question is raised of the more detailed classi-
fication of systems according to the reaction to con-
stant (flow) influences,

CONCLUSION

The theoretical study of the problem of stability
of ecological systems is a task of great complexity
and extreme topicality. It requires the application
of an entire arsenal of mathematical means ob-
tained in pre-biological natural science, and, of
course, the development of new approaches, ideas
and methods.

At present the state of affairs in methodological
questions is entirely unsatisfactory.

Even well-known mathematical methods are used
in ecological studies with insufficient classification.
The well-known methods of Lyapunov are well
suited for the description of “dynamic impacts” on
the ecological system, of the type of the sudden
change in the number of one or several species
belonging to the ecosystem. However, the structural
shifts that correspond to the parametric influence
on the system (the change in the water or salt re-
gime, pollution, etc.) do not have in ecological
works any adequate mathematical description.

A disturbing break between theory and practice
has arisen and threatens to become entrenched. For
questions of long-term forecasting, planning and
decision-making it is absolutely necessary to know,
what happens when there are structural reconstruc-
tions in biosystems? Yet theoretical works repeat
in quasi-biological terms the well-known mathe-
matical results, and quite frequently with mistakes.

Meanwhile, quite similar problems have been
dealt with for a long time and quite fruitfully in
other fields of biology — physiology and biochem-
istry. In a completely different field of knowledge,
engineering, also very great is the role of struc-
tural reconstructions, a system having a very spe-
cific form of the theory of optimum regulation. In
the listed areas, independent contacts have long
been developing with mathematics, and definite
successes have been achieved.

Consequently, a bountiful collection of specific
tasks has been accumulated from a broad circle of
branches of knowledge, a collection having never-
theless a profound internal common character. The
consistent conducting of mathematical research in
this area may lead to the development of a suffi-
ciently general approach — a theory of adaptive



systems. The deep internal cause for the possibil-
ity of such formalization is the morphological heir-
archy of complex biological systems, which is
dynamically manifested in the kinetic hierarchy, in
the set of motions with a radically different time
scale. These properties are manifested most vividly
precisely at the organism level, being consolidated
by billions of years of biological evolution.

It is useful, therefore, even terminologically
(“adaptiveness”) to emphasize the desire to incor-
porate “the lessons of history,” the desire to carry
over to technological and ecological systems the
principles of regulation and management, which
have demonstrated their effectiveness in rigid tests
of natural selection.

Regardless of the possibility or impossibility of
constructing a sufficiently general and meaningful
mathematical model, the analogy with a whole
organism is useful in itself. This analogy puts in

sharp relief the question of creating an adequate
system of monitoring. Biology leaves no room for
doubt about the importance of the nervous system.
Without a nervous system (the internal system of
“observation and reporting”) there could not be
either effective management or even the very exis-
tence of any complex system.

Another aspect of this analogy is the selection
of subsequent variables that correspond to the dy-
namic hierarchy of the system. There, also, the role
of the study of experimental regimes becomes more
comprehensible for revealing the hierarchical struc-
ture and construction of an adequate system of
monitoring on the basis of indicator types, compon-
ents, and properties,

Such in general outlines are some of the method-
ological questions raised before mathematicians by
the present state of the problems of environmental
protection.
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